

TECHNO-ECONOMIC ANALYSIS (TEA) – SYNGAS 20 MW ELECTRICITY-DRIVEN PLASMA SYNGAS PLANT

(All numbers refer to continuous operation at 8 400 h yr-1, renewable-electricity PPA @ $70 \in MWh^{-1}$ and methane @ $35 \in MWh^{-1}$)

Graforce replaces conventional, carbon-intensive molecules with net-CO₂-negative alternatives — provided that renewable energy and carbon valorization are incorporated.

1 Purpose & Process & Vision

This TEA evaluates a 20 MW modular plasma plant that produces low-carbon (potentially carbon-negative) syngas— $H_2 + CO$ —from methane and captured CO_2 . By replacing steam-methane reforming (SMR) and coal gasification, the concept targets a > 90 % cradle-to-gate GHG reduction while remaining cost-competitive.

Process Overview

The plant produces syngas (H₂ and CO) and solid carbon via methane plasmalysis using Graforce's 500-kW modules, Key processes include:

- **Syngas Plasmalysis**: Converts a 50:50 molar mixture of methane (CH₄) and CO₂ into syngas (2CO + 2H₂) at 1,500 °C plasma temperature, with reactor exhaust at 1,200 °C, consuming 17 kWh/kg H₂ (adjusted for volumetric units).
- H₂ Plasmalysis: Converts methane into H₂ and solid carbon (C + 2H₂) at 8 kWh/Nm³
- **CO₂ Source**: CO₂ is captured from refinery off-gases within the same facility, provided by the refinery at no cost (capture and provision heat not included in OPEX).
- CO₂ and CH4 Preheating: Preheats CH4 & CO₂ between 400 and 900 °C using waste heat from plasmalysis modules, requiring 1.308 kWh/h.
- Waste Heat Utilization: 3 kWh/Nm³ H₂ at 1,200 °C (total 3,232.5 kWh/h) used exclusively for CH4 an CO₂ preheating, with 1,924.5 kWh/h
- Power Supply: Electricity via PPA at 0.07 €/kWh, 8,400 h/year, no PV required.

Plant Configuration

Item	Value	Comment
Installed power	40 × 0.5 MW = 20 MW	Modular skids
Operating time	8 400 h a ⁻¹	96 % availability
Module split	10 × H₂-modules 30 × Syngas-modules	
Key reaction (syngas modules)	$ (.H_a + (.()_a \rightarrow // H_a + // (.())) $	3.978 kg CH ₄ + 10.915 kg CO ₂ \rightarrow 1 kg H ₂ + 14 kg CO

Item	Value	Comment
Specific electricity	_	8 kWh plasma + 4 kWh auxiliaries in H ₂ -line
ll-nergy innuits	All electricity via 100 % renewable PPA @ 70 € MWh ⁻¹	

3 Material & Energy Balance

Stream	Per hour	Per year
H ₂ (total)	1 507 kg h-1	12 659 t a-1
CO (syngas line)	12 351 kg h- ¹	103 748 t a-1
Turquoise carbon	1 875 kg h-1	15 750 t a-1
Methane feed	6 009 kg h-1	50 474 t a-1
Captured CO2 feed	9 627 kg h-1	80 868 t a-1
Electricity	22 494 kWh h-1	188 950 MWh a-1

4 Capital Expenditure (CAPEX)

Item	Investment
Plasma modules (40 × 0.5 MW)	50.0 M€
Infrastructure (transformer, foundations, carbon handling, etc.)	5.2 M€
Total CAPEX	55.2 M€
Annualised CAPEX (8 % WACC, 20 y)	5.62 M€ a- ¹

5 Operating Expenditure (OPEX)

Cost item	Calculation	€ a-¹
Methane	50 474 t a-1 × 13.89 MWh t-1 × 35 € MWh-1	24.53 M€
Electricity	188 950 MWh a-¹ × 70 € MWh-¹	13.23 M€
Labour	5 FTE × 50 k€	0.25 M€
Total OPEX		38.01 M€

6 Levelised Cost of Syngas (LCOS) for the complete 40-module plant

(30 Dry-Reforming Modules + 10 Methane-Pyrolysis Modules \rightarrow H₂: $CO \approx 1.7:1$)

Step	Calculation	Result
1. Annual syngas mass	H₂: 625 kg h ⁻¹ (pyrolysis) + 882 kg h ⁻¹ (dry-reforming) = 1 507 kg h⁻¹ → 12 659 t a ⁻¹ CO: 12 351 kg h ⁻¹ (only dry-reforming) → 103 748 t a ⁻¹	H ₂ + CO = 13 858 kg h ⁻¹ ⇒ 116 407 t a ⁻¹
2. Annualised CAPEX	Total investment 55.2 M €; CRF(8 %,20 y) = 0.10185	5.62 M € a ⁻¹
3. Annual OPEX	Methane 24.53 M € + Electricity 13.23 M € + Labour 0.25 M €	38.01 M € a ⁻¹
4. Total annual cost	5.62 + 38.01	43.63 M € a ⁻¹
5. LCOS	43.63 M € a ⁻¹ ÷ 116 407 t a ⁻¹	≈ 0.38 € kg ⁻¹ syngas

Impact of Selling Turquoise Carbon at 500 €/t

(30 syngas-modules + 10 methane-pyrolysis modules; 15 750 t a^{-1} solid carbon available)

Item	Baseline (no C-credit)	With 500 €/t carbon credit
Annual cost (CAPEX + OPEX)	43.63 M € a ⁻¹	43.63 M € - (15 750 t × 500 €/t) = 35.76 M € a ⁻¹
Annual syngas mass	116 407 t a ⁻¹	116 407 t a ⁻¹ (unchanged)
LCOS (€/kg svngas)	43.63 M € / 116 407 t = 0.38 €/kg	35.76 M € / 116 407 t = ≈ 0.31 €/kg

Levelised Cost of Syngas (LCOS) – 30 Syngas Modules

- Syngas output $882 \text{ kg H}_2 \text{ h}^{-1} + 12 351 \text{ kg CO h}^{-1} = 111 157 \text{ t a}^{-1}$
- Syngas-related CAPEX share ≈ 41.4 M€ → annual charge 4.22 M€
- Syngas-OPEX methane 14.34 M€ + electricity 8.82 M€ + labour 0.19 M€ = 23.35 M€

• LCOS_syngas $(4.22 + 23.35) \,\mathrm{M}\odot / 111 \,157 \,000 \,\mathrm{kg} = 0.25 \,\odot \,\mathrm{kg}^{-1}$

Levelised Cost of Hydrogen (LCOH) – 10 Methane-Pyrolysis Modules

- **H₂ output** 625 kg $H_2 h^{-1} = 5$ 250 t a^{-1}
- Carbon by-product $1.875 \text{ kg h}^{-1} = 15.750 \text{ t a}^{-1}$
- Pyrolysis-related CAPEX share $10 \times 1.25 \text{ M} \oplus + 25 \%$ of infrastructure = 13.8 M \oplus \rightarrow annual capital charge 1.41 M \oplus a⁻¹
- Pyrolysis-OPEX
 - methane 21 000 t $a^{-1} \times 13.89$ MWh $t^{-1} \times 35$ € MWh⁻¹ = **10.2** M€
 - electricity 63 000 MWh $a^{-1} \times 70 \in MWh^{-1} = 4.41 M \in MWh^{-1}$
 - labour (25 %) = **0.06 M€**
 - → Total OPEX = 14.68 M€ a⁻¹

7 Economic Performance (Whole Plant)

Metric	Value
PANANIA	H ₂ (12 659 t × 2 €) + CO (103 748 t × 0.15 €) + Carbon (15 750 t × 0.5 €) = 48.8 M € a -¹ (assumes 500 € t-¹ carbon black)
Annual cost	CAPEX 5.62 M€ + OPEX 38.01 M€ = 43.63 M€ a-¹
Net cash flow	+5.1 M€ a-¹
IRR (20 y)	≈ 9 %
NPV (8 %)	≈ 15 M€
Simple payback	~11 years

8 Life-Cycle Assessment (LCA)

- Cradle-to-gate GHG intensity $10-15 \text{ g CO}_2$ -eq MJ-1 syngas (SMR $\approx 90-100 \text{ g}$).
- Key drivers
 - Renewable electricity (zero scope-2).
 - Direct utilisation of captured CO₂ (no new fossil carbon).
 - -15750 t a-1 solid carbon stores ≈ 58000 t CO₂-eq yr-1.
- **Net result** Baseline is carbon-neutral; carbon-negative if the solid carbon is land-filled or locked in long-lived products.

9 Benchmark versus Conventional Routes

Route	Levelised Cost (H2-eq)	GHG Intensity
Coal gasification	≈ 1.4 € kg-¹	$\approx 12 \text{ kg CO}_2 \text{ kg}^{-1} \text{ H}_2$
SMR (natural gas)	≈ 1.2 € kg-¹	$\approx 9 \text{ kg CO}_2 \text{ kg}^{-1} \text{ H}_2$
Plasma syngas	≈ 0.25 € kg-¹	$\approx 0.6 \text{ kg CO}_2 \text{ kg}^{-1} \text{ H}_2 \text{ (gross)}$

With ETS pricing > 80 \in t⁻¹ CO₂, the plasma route is both **cheaper and > 90** % **cleaner**.

10 Conclusions & Next Steps

- 1. **Economically viable replacement** for SMR/gasification where low-carbon power and modest carbon pricing are available.
- 2. Profitability hinges on selling turquoise carbon or obtaining CO₂ credits.
- 3. **Optimise heat integration** and consider downstream e-fuel (FT, methanol) coupling to boost value.

Graforce replaces conventional, carbon-intensive molecules with net-CO₂-negative alternatives — provided that renewable energy and carbon valorization are incorporated.

What does "net CO2 negative" mean in this context?

An alternative is *net* CO_2 *negative* if its total greenhouse gas balance (life cycle assessment, cradle-to-grave) is less than zero. This means that

The total amount of CO₂ equivalents released during raw material extraction, process operation, product use, and end-of-life is less than the amount that is permanently bound or avoided through substitution of conventional processes.

System boundaries and mass balance equation

$$\label{eq:complex} Net \ CO_2 = \underbrace{process-related \ emissions}_{c.g. \ electricity, \ auxiliaries} + \underbrace{upstream \ emissions}_{extraction, \ transport} - \underbrace{permanently \ bound \ carbon}_{solid \ C \ from \ plasmalysis} - \underbrace{upstream \ emissions}_{avoided \ SMR \ / \ coal \ gasification, \ carbon \ black, \ etc.}$$
 Net $CO_2 < 0 \Rightarrow CO_2$ -negative

How does methane plasmalysis achieve a net-negative CO₂ balance?

Building block	Impact on the balance
Renewable electricity (PV/Wind PPA)	Drives process-related emissions close to zero; grid electricity with a higher carbon intensity would worsen the balance.
Solid carbon (turquoise carbon)	Permanently binds the carbon contained in methane. A credit is granted as long as the carbon is not re-oxidised (e.g., landfilling or incorporation into long-life products).
Substitution credit for H ₂ / syngas	Every tonne of H_2 or syngas from plasmalysis displaces H_2 or CO produced via SMR or coal gasification, thereby avoiding their emissions.
Additional substitution (carbon black, petcoke, CaC ₂ -acetylene)	Generates extra credit when turquoise carbon or acetylene replaces fossil, CO ₂ -intensive products.

Example figures (syngas case, per 1 kg product)

Contribution	CO ₂ -equivalent*
Process electricity (38 g CO₂ / kWh, ≈ 3 kWh/kg)	+0.11 kg
Upstream CH₄ leakage (0.5 %)	+0.05 kg
Subtotal "gross emissions"	+0.16 kg
Solid carbon sequestered	–0.27 kg
Avoided SMR-H₂ (equivalent)	–1.02 kg
Net balance	–1.13 kg CO₂-eq

^{*} simplified example; source: internal LCA

Result: -1.13 kg CO₂-eq \rightarrow net CO₂-negative.

Critical conditions

1. Electricity source

If the power mix exceeds $\sim\!200$ g CO₂ / kWh, the balance shifts toward carbon-neutral or even positive.

2. Fate of the carbon

Only permanently sequestered or materially utilised carbon earns a credit. If it is combusted later, the negative effect disappears.

3. System boundaries & methodology

Substitution credits must be assigned consistently and transparently (ISO 14044, PEF Guidance, etc.).